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Rotorcraft Aerodynamics Models for a Comprehensive Analysis

Wayne Johnson
Johnson Aeronautics
Palo Alto, California

Recent developments of the aerodynamics models for the comprehensive analysis CAMRAD II
are described, particularly the unsteady aerodynamic models and dynamic stall models, and the
free wake geometry calculation. Three models for the unsteady aerodynamic loads in attached
flow are implemented: from incompressible thin-airfoil theory, from ONERA EDLIN, and from
Leishman-Beddoes. Five dynamic stall models are implemented: from Johnson, Boeing,
Leishman-Beddoes, ONERA EDLIN, and ONERA BH. A key feature of the implementation of
these models is revisions allowing the retention of airfoil tables for static loads in all cases.
Results are presented for a two-dimensional airfoil, a three-dimensional wing, and rotors.
Extensions of the CAMRAD II free wake method to include hover and ground effect are
described, including hover performance correlation.

Notation.

A rotor disk area, πR2

cdz,cmz section drag and moment coefficients at zero lift

cl,cd,cm section lift, drag, and moment coefficients

cn section normal force coefficient

CL wind axis rotor lift force, L /ρA(ΩR)2

CP rotor power, P /ρA(ΩR)3

CT rotor thrust, T /ρA(ΩR)2

CX wind axis rotor drag force, X /ρA(ΩR)2

D wake geometry distortion

f trailing-edge separation point (fraction chord
from leading edge)

k reduced frequency, frequency × semichord/speed

M Mach number

Mat advancing tip Mach number, (1+µ)Mtip
Mtip tip Mach number, ΩR/(speed of sound)

r blade radial station

rBetz initial radial station of tip vortex, Betz rollup

rTV initial radial station of tip vortex

R blade radius

t time

vconv wake convection velocity

α angle of attack

____________
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May 20–22, 1998. Copyright © 1999 by Wayne Johnson.
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αd delayed angle of attack

αz zero lift angle of attack

Γ bound circulation

µ advance ratio, (flight speed)/ΩR

ρ air density

σ rotor solidity, (blade area)/A

τ wake age

τK extent of initial convection (wake age)

Ω rotor rotational speed

Introduction

CAMRAD II is an aeromechanical analysis of
helicopters and rotorcraft that incorporates a combination
of advanced technology, including multibody dynamics,
nonlinear finite elements, and rotorcraft aerodynamics. For
the design, testing, and evaluation of rotors and rotorcraft;
at all stages, including research, conceptual design, detailed
design, and development; it calculates performance, loads,
vibration, response, and stability; with a consistent,
balanced, yet high level of technology in a single computer
program; applicable to a wide range of problems, and a
wide class of rotorcraft. Such capability is essential for
helicopter problems, which are inherently complex and
multidisciplinary.

A comprehensive helicopter analysis must calculate
performance, loads, vibration, response, and stability. The
multidisciplinary nature of helicopter problems means that
similar models are required for all of these jobs. It follows
that a comprehensive analysis must have a rotor wake
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model; account for drag and stall of the rotor blades;
include nonlinear dynamics of the rotor and airframe; and
model the entire aircraft. The analysis must perform trim,
transient, and flutter tasks. The trim task finds the
equilibrium solution (constant or periodic) for a steady
state operating condition. The operating condition can be
free flight (including level flight, steady climb or descent,
and steady turns), or constrained (such as a rotor in a wind
tunnel, with typically the thrust and flapping trimmed to
target values). It is usually necessary to identify the control
positions and aircraft orientation required to achieve the
specified operating condition. The transient task
numerically integrates the equations in time (from the trim
solution), for a prescribed excitation. The flutter task
obtains and analyzes differential equations for the system,
linearized about trim (probably by numerical perturbation).

A modern comprehensive analysis must be able to
analyze arbitrary configurations — whatever the designers
can invent. The system configuration must be defined and
changed by input to the analysis; it should not be
necessary to change the code as long as the required physics
are available. The definition of the solution procedure must
be just as flexible as the definition of the configuration.
The solution procedure must be defined and changed by
input to the analysis; it should not be necessary to change
the code as long as the required methods are available.
CAMRAD II uses a building-block approach to achieve
flexibility in the model of the dynamic and aerodynamic
configuration, and in the solution procedure. The
mathematical model of the kinematics, dynamics, and
response allows nonlinearities (structural, aerodynamic, and
kinematics); and arbitrary large motion, including rigid
body motions and large rotations of components relative to
each other. Hence CAMRAD II can model the true
geometry of a rotorcraft, including multiple load paths
(such as a swashplate and control system, lag dampers,
tension/torsion straps, and bearingless rotors); vibration
control devices (such as pendulum absorbers or active
control); arbitrary elastic axis and arbitrary hinge order;
drooped and swept tips; and dissimilar blades. The
building-block approach, separating the specification of the
configuration, the aeromechanical model, and the solution
procedure, is essential for expandability of the analysis.
Otherwise the smallest change involves the entire analysis,
and growth becomes increasingly harder as each new feature
is added. The building-block approach also leads naturally
to more general and more rigorous models. For ease of use,
a shell is provided to build typical rotorcraft and rotor
models, while the core input capability always gives
complete flexibility to define and revise the model. The
system pieces (building blocks) constitute the core
analysis. The rotorcraft shell constructs the core input for
an aircraft with one or two or more rotors; in free flight or

in a wind tunnel; and an N-bladed rotor, with an articulated,
hingeless, teetering, gimballed, or bearingless hub; perhaps
with a swashplate. The aerodynamic model includes a wake
analysis to calculate the rotor nonuniform induced-
velocities, using rigid, prescribed or free wake geometry.
CAMRAD II is described in references 1 and 2.

Flexibility and generality of the system configuration
are obtained by assembling standard components with
standard interfaces, and solving the system using standard
procedures. Components perform most computations
associated with the physics of the model of the system. So
components are the focus of modelling issues, including
the empiricism and approximations needed for a practical
model of many real systems. Development of an improved
model requires the development of a new component,
which will fit into the existing analysis framework.

This paper describes recent developments of the
aerodynamics models for the comprehensive analysis
CAMRAD II. The focus is on features of the wing
component: unsteady aerodynamic models (thin-airfoil
theory for loads at low angle of attack), and dynamic stall
models; and the wake geometry components. Several
models are implemented for the unsteady aerodynamic loads
in attached flow: from incompressible thin-airfoil theory,
from ONERA EDLIN, and from Leishman-Beddoes.
Several dynamic stall models are implemented: from
Johnson, Boeing, Leishman-Beddoes, ONERA EDLIN, and
ONERA BH. Extensions of the CAMRAD II free wake
method to include hover and ground effect are described.

Wing Component

The CAMRAD II wing component is based on lifting-
line theory, using steady two-dimensional airfoil
characteristics and a vortex wake. Lifting-line theory
assumes that the wing has a high aspect ratio, or more
generally that spanwise variations of the aerodynamic
environment are small. This assumption allows the
problem to be split into separate wing and wake models,
which are solved individually and combined. Viscous and
compressibility effects are included by using experimental
data for the two-dimensional airfoil characteristics that are
the foundation for the wing solution. Corrections for
yawed and swept flow are introduced, and an estimate of the
spanwise drag. For low angles of attack, thin-airfoil-theory
results are used to calculate the unsteady loading. For high
angles of attack, an empirical dynamic stall model can be
used.

Unsteady Airfoil Motion

Unsteady lift and moment in attached flow are calculated
based on thin-airfoil theory. Models from incompressible
thin-airfoil theory, ONERA EDLIN, and Leishman-
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Beddoes are implemented. The equations for these models
are given in Appendix A. Often only the unsteady,
noncirculatory terms are required, since steady loads are
obtained from the airfoil tables and lift deficiency function
effects are usually accounted for in the wake-induced
velocity. The following modifications are introduced for all
three models: (a) The steady loads are excluded. (b) The
moment about the quarter chord (theoretical aerodynamic
center) is used for the moment about the actual
aerodynamic center. (c) The loads are corrected to get the
real lift-curve slope. (d) The expressions are extended to
reverse flow.

The incompressible unsteady loads are derived following
reference 3. For an airfoil with a trailing-edge flap, the
unsteady loads are derived following references 3 to 5.
Optionally the flap can be aerodynamically balanced, with
an open or sealed gap.

The ONERA EDLIN (Equations Differentielles
Lineaires) theory for the unsteady loads is presented in
reference 6. The "extended model" of Petot includes the
effects of heave as well as pitch, and time-varying free
stream. The "pitch model" (see also refs. 7 to 9) is not
appropriate since at high frequency it either gives a lift
deficiency function approaching zero instead of one-half, or
it neglects a lift-from-pitch term (depending on the
interpretation of the terms in the equation). In the absence
of stall, Petot found that thin-airfoil-theory results
compared well with measured behavior. To include the
effects of compressibility, Küssner's coefficients are used,
as tabulated by van der Vooren (ref. 10) and curve-fit by
Petot (ref. 6). An additional modification is made here: a
constant is changed so the incompressible circulatory loads
match the lift deficiency function value of C = .5 at high
frequency. Then compared with the incompressible
unsteady loads result, the ONERA EDLIN model (see
Appendix A) introduces factors that are functions of Mach
number; and adds a first-order differential equation for a lift
increment, to account for the airfoil shed wake effects (lift
deficiency function). These factors give a good
representation of Küssner's coefficients, except that the
moment produced by heave is always real, when it should
exhibit a phase shift for nonzero Mach number. For an
airfoil with a trailing-edge flap, the effects of
compressibility are approximated by using these same
factors in the incompressible results. No shed wake terms
are included in the unsteady loads for flap lift or flap
moment.

The Leishman-Beddoes theory for unsteady loads in
attached flow is presented in references 11 to 13. The
theory is based on the indicial response of a thin airfoil in
compressible flow to heave, pitch, and flap motions. The
indicial response is a combination of impulsive (small
time) and circulatory (long time) terms, each approximated

by exponential functions of time. In this form, the
equations for the loads can be transformed from indicial
response to Laplace domain, and thence to state equations
(ordinary differential equations in time). The impulsive
indicial response is derived using piston theory, which is
valid for nonzero Mach number and small enough time.
Thus while giving nonsingular results at zero Mach
number, this theory does not include the incompressible
limit exactly. The amplitude of the circulatory indicial
response is obtained from the quasistatic incompressible
response. An additional modification is made here: for an
airfoil with a trailing-edge flap, the expressions are
extended to include the effects of aerodynamic balance, and
to include the flap hinge moment produced by pitch and
heave. The resulting unsteady loads are obtained from first-
order differential equations for both the impulsive and the
circulatory terms (see Appendix A). This theory includes
the effects of the airfoil shed wake, but not entirely in the
"circulatory" terms. Care must be taken with a vortex wake
or dynamic inflow model that the shed wake effects are
neither omitted nor duplicated.

Dynamic Stall

Dynamic stall is characterized by a delay in the
occurrence of separated flow produced by the wing motion,
and high transient loads induced by a vortex shed from the
leading edge when stall does occur. Dynamic stall models
from Johnson, Boeing, Leishman-Beddoes, and ONERA
EDLIN, and ONERA BH are included. The equations for
these models are given in Appendix B. As implemented,
the dynamic stall models still use the airfoil table for
steady characteristics, evaluated at an angle of attack that
includes the dynamic stall delay. Retaining the use of
airfoil table data is considered essential, both to provide the
basic characteristics associated with airfoil shape, and to
isolate the effects of the dynamic stall model. In addition to
the delayed angle of attack, coefficient increments are
defined by the dynamic stall model. All the models are
extended to reverse flow. Let αd be the delayed angle of
attack, calculated from the angle of attack α. Then the
corrected coefficients are:

cl = 
α−αz
αd−αz

  cl 2D(αd) + ∆cl DS + cl US

cd = (α−αz
αd−αz

)2
 (cd 2D(αd) − cdz) + cdz + ∆cdDS + cdUS

cm = 
α−αz
αd−αz

  (cm 2D(αd) − cmz) + cmz + ∆cmDS + cmUS

where αz is the zero-lift angle of attack, and cdz and cmz
are the corresponding drag and moment. The form of the
lift and moment corrections ensures that the coefficients
below stall are unchanged. The ∆cDS's are increments
defined by the dynamic stall model, generally attributed to
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the leading-edge vortex. Note that for use in the wing
component of CAMRAD II, corrections for yawed flow are
required as well. The unsteady loads in attached flow are
included in the above expressions (cUS). Since these loads
are calculated based on linear (thin-airfoil) theory, they can
be evaluated separately and added to obtain the total loads.
Optionally the unsteady loads can be set to zero for stalled
flow; however, most of the dynamic stall models have
been developed assuming that the attached flow terms are
active at high angle of attack as well.

The Johnson dynamic stall model (adapted from refs. 14
to 17) uses an angle of attack delay proportional to α·, plus
impulsive lift and moment increments from the leading-
edge vortex. Thus the model has first-order differential
equations for the delayed angle of attack, and algorithms to
evaluate the load increments produced by the leading-edge
vortex.

The Boeing dynamic stall model (developed in refs. 18
to 20) uses an angle of attack delay proportional to the
square-root of α·, which produces the basic hysteresis
effects. The coefficient increments produced by the leading-
edge vortex are not used in this model. The delayed angle
of attack is calculated directly from the current α and α·

values; or using a first-order differential equation.

The Leishman-Beddoes dynamic stall model (refs. 21 to
23) uses a delayed angle of attack, plus lift and moment
increments from the leading-edge vortex. This model
characterizes the airfoil static stall behavior by the trailing-
edge separation point f (fraction of chord from leading
edge), and a critical lift coefficient cl CR at the separation
onset boundary (leading-edge separation at low Mach
number, shock reversal at high Mach number). The airfoil
data for lift are used to identify constants s1, s2, and αs
that generate f(α) as follows:

f = 1. − .3 e
(|α−αz|−αs)/s1 for |α−αz| ≤ αs

f = .04 + .66 e
(αs−|α−αz|)/s2 for |α−αz| > αs

Then |α−αz| = αs or f = .7 is taken as the definition of
stall. The parameters cl CR, s1, s2, and αs are required as a
function of Mach number, for positive and negative angle
of attack, normal and reverse flow, at each span station.
The Leishman-Beddoes model for unsteady flow is based on
fd = f(αd) at the delayed angle of attack.

Here the Leishman-Beddoes model is modified to use
the static loads directly from the airfoil tables, instead of
fitting the static loads to analytical functions. Leishman
and Beddoes (ref. 21) write the static normal force,
moment, and drag as functions of f:

cn 2D = cnα(M) KN(f) (α−αz)

cm 2D = cmz + cn KM(f)

cd 2D = cdz + (1 − η KD(f)) (α−αz)2

The Kirchhoff expression KN = (1/4)(1 + √ f )2 is used;
several functional forms of KM and KD are found in the
literature. In unsteady flow, a delayed separation point fd is
calculated from f, and then the loads evaluated using fd
(Leishman and Beddoes use the notation f'″ instead of fd);
and terms for attached flow and the leading edge vortex
added. Since fd corresponds to a delayed angle of attack, it
is possible to replace the analytical functions K with the
loads from airfoil tables:

cn = cnα(M) KN(fd) (α−αz) + ∆cnDS + cnUS

= 
α−αz
αd−αz

 cnα(M) KN(fd) (αd−αz) + ∆cnDS + cnUS

= 
α−αz
αd−αz

  cn 2D(αd) + ∆cnDS + cnUS

cm = cmz + cn KM(fd) + ∆cmDS + cmUS

= cmz + 
α−αz
αd−αz

  (cm 2D(αd) − cmz) + ∆cmDS + cmUS

cd= cdz + (1 − η KD(fd)) (α−αz)2 + ∆cdDS + cdUS

= cdz + ( α−αz
αd−αz

)2
 (cd 2D(αd) − cdz) + ∆cdDS + cdUS

No change to the model is implied for lift and moment,
since these analytical functions are intended to be
equivalent to the airfoil table data. A change is implied for
the drag equation only if KD depends on other variables
besides f. There will be some changes in the resulting
loads however, when the K functions do not give a good
representation of the airfoil table data. At this point the lift
rather than the normal force can be used. While the
function f(α) should be identified from the normal force
data, there is usually little difference if it is identified from
the lift data instead. Similarly, cnDS can be used for cl DS;
and cdDS derived from cnDS. Further modifications of the
model are required because the above expression for f(α)
does not distinguish between positive and negative angle of
attack. In order to handle oscillations through αz, a
continuous monotonic function of α  is needed. The
function f is also modified in order to handle large angle of
attack. This modification to the definition of f does not
affect the model for attached flow or around stall, but with
it the delayed angle of attack behaves reasonably at very
large angles.

In the Leishman-Beddoes dynamic stall model, the
delayed angle of attack αd is calculated including: static
hysteresis around stall; a lag in the leading-edge pressure
relative cl; and an additional lag in the boundary layer



5

response. There are separate αd equations for lift and
moment, to allow different behavior during reattachment.
Vortex lift accumulation begins at the onset of stall, driven
by the difference between the linear and nonlinear lifts, cv.
The vortex loads ∆cDS are obtained from cv with a time
lag. Thus the model has first-order differential equations for
the delayed angle of attack and the leading-edge vortex lift.

The ONERA EDLIN (Equations Differentielles
Lineaires) dynamic stall model (ref. 6) uses a stall delay,
plus lift, drag, and moment increments calculated from
second-order differential equations. The "extended model" of
Petot includes the effects of heave as well as pitch, and
time-varying free stream. Generalizations based on Petot's
"pitch model" (see ref. 7) lead to more complicated
equations. The load is divided into two parts. The first part
is the load in the absence of stall, which here gives the
unsteady load for attached flow. The second part of the load
is driven by the difference between the linear load
extrapolated to the unstalled domain, and the real nonlinear
static load. Tests show that dynamic stall occurs at a
higher angle of attack than does static stall. The absence of
stall is preserved in the model by forcing the difference
between the linear and nonlinear loads to be zero for a time
τd after exceeding the static stall angle. Here the model is
modified in several ways. The static and unsteady terms are
separated from the dynamic stall effects. A pitch rate term
in the lift, that reference 6 associates with attached flow
unsteady loads, is here contained in the dynamic stall load.
The loads are written in terms of α· . Reference 6 uses the
upwash rate of change w·  in order to include the effects of
time-varying free stream, but for a three-dimensional wing
α· also includes the wake-induced velocity. For all the
dynamic stall models, the option is available to evaluate
α· from w· .

The ONERA BH (Bifurcation de Hopf) dynamic stall
model (ref. 24) uses a delayed angle of attack, plus lift and
moment increments calculated from first-order and second-
order differential equations. The Hopf bifurcation model
replaces the time-invariant equilibrium state of flow by a
time-varying equilibrium state, as the angle of attack
exceeds a critical value. The load is divided into two parts,
a "steady" part (static plus attached flow unsteady) and an
"unsteady" part (dynamic stall). The ONERA EDLIN
theory can be used for the unsteady load in attached flow.
For time-varying airfoil motion, the loads are evaluated at
a delayed angle of attack that is calculated as in the
Leishman-Beddoes dynamic stall model. There are also
dynamic stall load increments, driven by the pitch rate and
pitch acceleration. Here the model is modified by
separating the static and unsteady terms from the dynamic
stall effects.
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Figure 1. Two-dimensional airfoil lift and moment, at k =
.188 and M = .5; oscillating in pitch, with circulatory
terms.
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Figure 2. Two-dimensional airfoil lift and moment, at k =
.188 and M = .5; oscillating in pitch, without circulatory
terms.
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Figure 3. Two-dimensional airfoil lift and moment, at k =
.188 and M = .5; oscillating in heave, with circulatory
terms.
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Figure 4. Two-dimensional airfoil lift and moment, at k =
.188 and M = .5; oscillating in heave, without circulatory
terms.

Solving the State Equations

Some of the above models introduce ordinary
differential equations for aerodynamic state variables. These
differential equations can be solved in CAMRAD II along
with the structural dynamic equations. There are a large
number of states however, and the equations can be
nonlinear as well as time-varying. So an implicit solution,
implemented within the wing component, is more useful
for the trim and transient tasks. The equations must be
formulated as differential equations in order to be linearized
in the flutter task, although a linearized solution of the
highly nonlinear aerodynamics involved in dynamic stall is
not entirelyc onsistent. Two implicit methods are
implemented in CAMRAD II to solve the differential
equations: a finite-difference solution, based on trapezoidal
integration; and a sampled-data solution, based on the
convolution integral or Duhamel's integral (ref. 21).

Unsteady Load Examples

Figures 1 to 4 compare the lift and moment calculated
by the three unsteady aerodynamic models, for a two-
dimensional NACA 0012 airfoil oscillating in pitch or
heave. The ONERA EDLIN and Leishman-Beddoes models
give somewhat different lift deficiency functions at this
condition (figures 1 and 3; the incompressible model does
not include the lift deficiency function). The "circulatory"
terms of the Leishman-Beddoes model are not just shed
wake effects, so omitting these terms gives different results
than for the ONERA EDLIN model (figures 2 and 4).

Figures 5 and 6 compare the aerodynamic models for a
three-dimensional semispan wing in a wind tunnel,
oscillating in pitch about the quarter chord. The measured
data are from reference 25. Two cases are considered. The
case with mean angle of attack of 11 deg is used to
compare the models for unsteady loads in attached flow.
The case with mean angle of attack of 15 deg is used to
compare the models for dynamic stall. The analysis
considered a full span wing of aspect ratio 10, with 25
spanwise collocation points. The circulatory terms were
included in the unsteady aerodynamic models, so the wake
model included only trailed vortex elements, omitting shed
vortex elements. A transient calculation was performed,
using 25 to 40 time steps per cycle; the loads converged
after three cycles. The wing had an NACA 0015 airfoil
section. Static airfoil data were obtained from a two-
dimensional test of this wing. Span stations are measured
from zero at the full-span wing centerline, to one at the
wing tip.

Figure 5 shows the lift and moment at 25% span
station for the mean α = 11 deg case, comparing the three
unsteady aerodynamics models. Although the oscillation is
at low angle of attack for this case, the dynamic stall
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Figure 5. Three-dimensional wing oscillating in pitch, at k
= .096 and M = .287; lift and moment at 25% span station
(static stall).

models would improve the correlation above α = 14 deg.
The difference between measured and calculated mean
moment is found along the entire span, so it should not be
an effect of three-dimensional aerodynamics.

Figure 6 shows the lift and moment at 47.5% span
station for the mean α = 15 deg case, comparing the five
dynamic stall models. The reduced frequency of the
oscillation is typical of the once-per-revolution angle of
attack variation of a helicopter blade, but the 4 deg
amplitude is relatively small, resulting in a low pitch rate
(maximum α·c/V = .0053). The differences between the
dynamic stall calculations are no more than should be
expected from empirical models. The correlation may be
judged remarkably good considering the simplicity of some
of the dynamic stall models; and also exhibiting significant
errors, as expected with empirical models.

A Puma helicopter with experimental swept-tip rotor
blades was flight tested by the Royal Aeronautical
Establishment at Bedford (ref. 26). The flight test case at
high speed has a large value of cyclic pitch, hence a large
contribution from the unsteady aerodynamic loads. The
calculations were performed for an elastic rotor, trimming
thrust and flapping with collective and cyclic pitch. The
thrust, flapping, and shaft angle were obtained from the
flight test data. Since the loading at high speed is negative
on the advancing tip, the dual-peak wake model was used,
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Figure 6. Three-dimensional wing oscillating in pitch, at k
= .038 and M = .287; lift and moment at 47.5% span
station, with dynamic stall model.

with rigid wake geometry. Figures 7 and 8 show the
normal force and moment for an advance ratio of µ = .38,
advancing tip Mach number Mat = .86, and thrust CT/σ =
.080; at 92% radius (on the swept tip). The flight test
measurements are compared with results using the three
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Figure 7. Flight test of Puma with swept tip rotor blade,
at µ = .38, Mat = .86, and CT/σ = .080; total section lift
and unsteady lift.

models for unsteady aerodynamics. Shown are both the
total load, and just the unsteady term. The correlation
between measurement and calculation is good. The
circulatory terms of the ONERA EDLIN and Leishman-
Beddoes models are best left out, with the shed wake effects
accounted for in the vortex wake model. Without these
circulatory terms, the three unsteady aerodynamics models
give comparable results.

The correlation between measured and calculated normal
force is similar at 95% and 97.8% radius to that at 92%
radius. The correlation for pitching moment is fair at 92%
radius (figure 8), but worse outboard. The lifting-line wing
model of CAMRAD II is second-order for lift, which
contributes to the good correlation for lift; but it is still
first-order for moments. The measured moments show a
variation with radial station at the tip that is probably
associated with three-dimensional aerodynamics. The angle
of attack varies radially at the tip, but is small enough so
at these Mach numbers (effectively reduced by the tip
sweep) the static pitch moment is zero (the airfoil is
symmetric). Thus the calculated pitching moment consists
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Figure 8. Flight test of Puma with swept tip rotor blade,
at µ = .38, Mat = .86, and CT/σ = .080; total section
moment and unsteady moment.

primarily of the noncirculatory, unsteady term (figure 8),
which does not vary much with tip span station.

The McDonnell Douglas Advanced Bearingless Rotor
(MDART) was tested in the NASA Ames Research Center
40- by 80-Foot Wind Tunnel (refs. 27 and 28). Nearly
identical results for calculated lag damping and blade loads
were obtained using the three unsteady aerodynamics
models. The unsteady loads are essential for the analysis,
since they provide the blade pitch damping.

A Lynx hingeless-rotor helicopter was flight tested by
Westland Helicopters up to and beyond the stall boundary
(ref. 29). The flight test included speed sweeps at low and
high gross weight, extending into regimes with significant
dynamic stall. Figure 9 compares the measured power with
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Figure 10. Lynx rotor, at µ = .25 and shaft angle of attack
−4 deg; influence of aerodynamic model on calculated rotor
drag (no blade lag or torsion motion).

calculations using the five dynamic stall models. This
figure is just a reality check rather than correlation, since
the calculations were performed without elastic lag or
torsion motion of the blades (to isolate the effects of the
different aerodynamic models), and because the static airfoil
data were not measured much beyond the onset of stall.
Figure 10 shows the influence of the aerodynamic model
on the calculated rotor drag as a function of rotor lift.
Calculations are presented using the five dynamic stall
models, as well as with and without the yawed flow
corrections. This is not a new result (see ref. 30), except
for the presence of five dynamic stall models instead of just
one. But figure 10 captures the state-of-the-art well: the
effects of yawed flow and dynamic stall are extremely

important in rotor performance, yet their calculation in
practical analyses must rely on empirical models.

Free Wake Geometry

The rotor vortex wake is an important factor in most
problems of helicopters, including poor performance, high
blade loads, high vibration, and high noise levels. An
accurate calculation of the wake-induced nonuniform inflow
and the resulting blade airloads is needed in order to predict
rotor behavior. Below an advance ratio of about µ = 0.20,
blade-vortex interaction is particularly strong and therefore
an accurate wake geometry is needed as well. The general
free wake geometry calculation for wings and rotors that is
implemented in CAMRAD II was described in reference
31. The method gave good performance and airloads
correlation at advance ratios of 0.05 and above, with
reasonable computation speed. The wake geometry
distortion can be calculated for multiple wings, multiple
rotors, and non-identical blades; for all wake structures,
including multiple rolled-up trailed vorticity and inboard
sheets as well as tip vortices; using the same wake model
as the induced velocity calculations; for transients as well
as the trim solution.

Recent developments have extended this free wake
method to include hover and ground effect. Application to
hover required improvements in the wake geometry
extrapolation method, and a model for the tip vortex
formation process (initial radial contraction and initial
vertical convection). Both for convergence in hover and for
efficiency, the capability to require the distortion to be
identical for different wings (perhaps with a time shift) is
needed. The influence of the ground was introduced by
using image vortex elements in the wake geometry and
induced velocity calculations. These developments are
documented here.

The distortion is evaluated at time t and wake age τ, and
may be required at an age beyond which it has been
calculated. The time and age increment in the wake
geometry calculation is ∆t. Let τlast be the maximum age
of the available distortion. The distortion is extrapolated by
assuming that the vortex element is convected for the time
interval (τ−τlast) by a constant velocity:

D(t,τ) = D(t−(τ−τlast),τlast) + (τ−τlast) vconv

The distortion is used at a constant value of (t−τ), which is
the time when the wake element was created. The free
distortion is calculated for wake ages up to τmax. The
accuracy of the wake geometry is generally improved by
not using the last part of the calculated distortion, hence
starting the extrapolation at τ last less than τm a x .
Typically the last revolution of the calculated distortion is
not used in the extrapolation, particularly for hover and
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low advance ratio. Extrapolation uses the convection
velocity vconv, obtained from the average distortion
increment at τlast:

vconv = 
1
T

 ∑
t

 (D(t,τlast) − D(t−∆t,τlast−∆t)) 
1
∆t

(in inertial axes, for each distorted structure). This
convection velocity is recalculated at the end of each
revolution of the wake geometry algorithm, and the final
value is saved for use when the wake geometry is
evaluated. Optionally, the convection velocity from the
rigid or prescribed model can be used to extrapolate the free
distortion. For the transient task, the velocity is filtered
over the latest period; or the trim convection velocity can
be used.

A subset of the wings can have identical trim distortion
(in an appropriate frame, with a time shift). Then it is only
necessary to calculate the distortion for one wing of the
subset (the parent wing). The distortion of the child wing
is evaluated from the parent:

Dchild(tchild,τ) = Dparent(tparent,τ)

where tparent = tchild + lshift∆ t, and lshift is an input
time shift. For example, with N blades uniformly spaced
over the period T = J ∆t, the time shift for the m-th blade
is lshift = (m/N)J (which is an integer if J is a multiple of
N). If lshift is not an integer, then the parent distortion is
interpolated over t and (t−τ) to obtain the child distortion.

The tip vortex forms on the generating wing at a span
station inboard of the wing tip. The location of the tip
vortex at the trailing edge can influence the loading and
near wake. This effect is implemented in the wing
component, by assuming that the bound circulation is zero
outboard of the location of the tip vortex at the trailing
edge. For a highly tapered wing tip, the tip vortex can
form 4–6% span inboard of the tip, and the effect on the
loading is significant. For a rectangular planform, the
effect is small and can be ignored. Further entrainment
occurs in the wake, so the tip vortex effectively forms at
an initial span station rTV inboard of the tip. The wake
geometry components implement the effect of this initial
contraction by assuming that the tip vortices and sheet
edges are described by trailed lines arising from span
stations rT V rather than from the tips. In the wake
geometry components, rTV is an input parameter, or it is
calculated assuming that the centroid of the trailed vorticity
is conserved (Betz rollup).

The initial span station of the tip vortex can be
obtained from Betz rollup as follows. Consider the bound
vorticity from rA to rB, rolling up into a trailed line. The
centroid of the trailed vorticity is at rC:

rC (ΓA−ΓB) = ∫
rA

rB
   
∂Γ
∂ r

 r dr = ΓBrB − ΓArA − ∫
rA

rB
  Γ dr

 = ΓBrB − ΓArA − (rA−rB)ΓM

in terms of the mean bound circulation ΓM; hence

rC = (1−w) rA + w rB

with w = (ΓM−ΓB)/(ΓA−ΓB). The spanwise displacement
calculated by the Betz rollup model is multiplied by an
input factor; and for the wing tips, added to the input
displacement. At the wing tips, it is assumed that the
vorticity that rolls up is between the nearest bound
circulation peak and the tip. At inboard stations, it is
assumed that the vorticity that rolls up is between the
nearest peak in the panel to the left and the nearest peak in
the panel to the right. With the single-peak wake model,
this peak is at the maximum bound circulation; with dual
peaks in the circulation distribution, the right or left peak
is used. The mean bound circulation ΓM is evaluated
assuming piecewise-linear variation of the bound
circulation over the span.

With a three-dimensional wing, the Kutta condition
requires that the wake leave the trailing-edge tangent to the
wing surface (ref. 32). In the absence of a calculation of the
detailed flow field near the wing, this requirement can be
satisfied by using an initial convection velocity qK = Γ/πc,
where Γ is the section bound circulation and c is the chord.
This result is obtained using the zero-lift chord line for the
trailing-edge bisector, and a lift-curve slope of 2π. The
velocity direction is assumed to be perpendicular to the
plane defined by the bound vortex and the trailed vortex
element to the collocation point. The initial velocity qK is
used for collocation points at wake age τ = 0, and the
actual wake self-induced velocity q at age τ ≥ τK, so

(1 − τ/τK) qK + (τ/τK) q

replaces q for τ < τK. The age τK must be selected based
on correlation with measured wake geometry and
performance. Optionally this initial convection velocity
can be ignored (qK never replacing q). Hover performance
calculations require τK > 0, but in forward flight best
results are obtained with a much smaller value of τK. Thus
for hover, the initial convection velocities are defined such
that the wake leaves the wing tangent to the wing surface.
The EHPIC analysis (refs. 33 and 34) has a similar feature,
implemented differently: the first element of the trailing
vortices is constrained to leave the rotor blade parallel to
the lifting surface.

Generally it is only the distorted geometry of the tip
vortices that is calculated. Prescribed geometry can be used
for the inboard vorticity sheets.
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Table 1. Tip vortex formation in hover.

rotor UH-60A tapered rect. ogee S-76 XV-15

number of blades 4 4 2 2 4 3

radius R (ft) 4.683 4.683 3.43 3.43 3.5 12.5

solidity σ .0825 .0825 .0464 .0396 .0748 .089

chord c/R or ctip/R .065 .022 .073 .073 .059 .093

2.5(c/R or ctip/R) .16 .05 .18 .18 .15 .23

τK .15 .05 .15 .15 .15 .23

prescribed rTV .99 .97 .96 .91 .99 .98

Betz rollup rTV rBetz rBetz−.01 rBetz−.02 rBetz−.02 rBetz .4rBetz

wake geometry at first encounter with following blade (vertical convection z/R and radial contraction r/R)

CT/σ .0856 .1069 .0773 .1014 .099 .103 .078 .1018

measured z/R .0285±.005 .0405±.005 .013±.005 .022±.005 .065 .069 .045±.015 .060±.015

prescribed .030 .046 .009 .019 .066 .070 .027 .067

Betz rollup .029 .047 .012 .020 .065 .070 .029 .068

measured r/R .925±.007 .921±.007 .907±.007 .907±.007 .865 .820 .915±.015 .890±.015

prescribed .946 .940 .915 .908 .867 .824 .947 .918

Betz rollup .948 .938 .912 .905 .870 .821 .943 .916

The influence of the ground can be included in the
wake-induced velocity calculation and in the wake
geometry calculation, through the use of image elements
in the wake model. For inviscid flow, the boundary
condition imposed by the ground is zero normal wake-
induced velocity at the ground plane. This constraint is
satisfied by introducing an image element for every vortex
element in the wake model. The image element is created
from the vortex element by changing the sign of the
strength, and reflecting the position across the ground
plane. A wake element can be too near or below the ground
plane. This can occur with rigid or prescribed geometry
that does not include the effect of the ground; or because of
numerical effects in the free geometry calculation. Here
"near" the ground plane is defined by a distance δ above
ground level (δ  could be zero or even negative).
Optionally, the analysis neglects any part of a vortex
element (and the corresponding part of the image) that is
below the height δ. It is found that the solution for the
distortion places the wake elements completely above the
ground plane (as long as the elements are not too long).
Thus this feature improves convergence of the distortion
calculation, without actually affecting the position of the
distorted elements above the ground plane.

With this inviscid and steady free wake geometry, it is
an idealized problem that is solved, not the actual viscous
and unsteady flow field of a hovering rotor. So the
objective of a consistent and reliable calculation of hover

performance can be achieved only on the basis of
correlation with measured wake geometry, airloads, and
performance. Progress in the analysis of hovering rotors is
here measured by a narrowing focus of empiricism: from a
factor on the uniform induced-velocity for momentum
theory; to parameters defining the wake geometry for
prescribed methods; to the initial convection and initial
contraction, wake extent, and core size for free wake
methods based on inviscid aerodynamics.

Hover Correlation

Figure 11 shows an example of the calculated free wake
geometry in hover. Figure 12 shows the calculated wake
geometry in ground effect; the advance ratio is µ = .02, and
the height of the hub above the ground is 50% the rotor
diameter.

The tip vortex formation process (initial radial
contraction and initial vertical convection) was calibrated
using measured wake geometry at the first encounter with a
following blade, and measured blade airloads. Table 1
summarizes the results. The required extent of the initial
convection is approximately τK = 2.5c/R revolutions,
which is typically about 0.15 revolutions. With taper over
a large span range, the tip chord should be used to estimate
τK. The initial span station rTV depends on blade number
(table 1 shows rTV = .99R, .98R, .96R for 4, 3, 2 blades
respectively) and on planform taper. Betz rollup typically
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Figure 11. Calculated hover wake geometry (S-76 rotor at
CT/σ = .08).

Figure 12. Calculated free wake geometry in ground effect
(S-76 rotor at CT/σ =.08, µ = .02, height above ground =
50% rotor diameter).
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Figure 13. Blade section lift in hover for model UH-60A
rotor (CT/σ = .086 and .107, Mtip = .63).

requires an additive or multiplicative correction, but has the
advantage that it can be easily applied to multiple rollup
cases. These results for rTV give good correlation for the
tip loading, although in some cases the measured wake
geometry at the first encounter with a following blade is
perhaps .02R further inboard than the calculated position.
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Figure 14. Blade section lift in hover for model tapered
rotor (CT/σ = .077 and .101, Mtip = .63).

Figures 13 to 15 compare the calculated loading and
wake geometry with measurements on a 1/5.73-scale
model UH-60A rotor and a corresponding tapered-tip rotor
(refs. 35 to 37). The UH-60A model had a 20-deg swept tip
beginning at .93R, and approximately the full-scale UH-60
twist distribution. The tapered model had 1:3 taper
beginning at .82R, no sweep, and linear twist. The cases
shown are those presented in reference 37. A Reynolds
number correction has been applied to the drag coefficient
(based on a 1/5-th power scaling of the drag), but not to
the maximum lift. Figure 13 shows the loading for the
UH-60A. A .01R inboard shift of the initial span station
of the tip vortex gives a small improvement of the peak
loading calculation. Figure 14 shows the loading for the
tapered tip. A .03R inboard shift of the initial span station
of the tip vortex gives a significant improvement of the
peak loading calculation; and the extent of the initial
convection scales with the tip chord in this case. Applying
the Reynolds number correction to the maximum lift does
not give the correct peak loading. Figure 15 compares the
calculated wake geometry with vertical and radial positions
measured at the first encounter with a following blade.
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Figure 15. Hover wake geometry for model UH-60A and
tapered rotors (vertical convection z/R and radial
contraction r/R).

Figures 16 and 17 compare the calculated circulation
and wake geometry with measurements on a model two-
bladed rotor, for rectangular and ogee tip planforms (ref.
38). A .04R inboard shift of the initial span station of the
tip vortex gives an improvement of the peak circulation
calculation. Note that for the ogee tip, the blade lift and
circulation are suppressed outboard of .95R; the
measurements showed near the blade trailing edge the tip
vortex forming at about .94R. Figure 17 compares the
calculated wake geometry with the vertical and radial
positions measured at the first encounter with a following
blade. Figure 17 includes results for the S-76 and XV-15
rotors as well; the measured data are from references 39 and
40 respectively.

Figures 18 to 22 compare measured hover performance
with free wake geometry calculations for several rotors.
Power is presented instead of figure of merit for the usual
reason: the correlation appears much better. Figure 18
shows the performance of the 1/5.73-scale model UH-60A
rotor and the tapered-tip rotor; the measured performance
data are from references 36 and 37. Figures 19 and 20 show
the performance of the S-76 and Bo-105 rotors. The
measured data are from references 41 and 42 respectively.
The calculations do not show a large effect of blade elastic
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Figure 16. Blade bound circulation in hover for model
rotors with rectangular and ogee tip planforms (CT/σ =
.099 and .103, Mtip = .22).

motion. Figure 21 shows the performance of the AH-64
and UH-60 rotors. The aircraft performance was measured
in flight by the USAAEFA (refs. 43 and 44); the data were
corrected to just main rotor performance by Baserga and
Scully of the USAATCOM (ref. 45). The calculated
performance is improved for the AH-64 using an elastic
instead of a rigid blade model. Figure 22 shows the
performance of the XV-15 rotor. The measured data are
from reference 46.

The measured hover performance and wake geometry of
the XV-15 rotor with a subwing are presented in references
47 and 40. The subwings had approximately 6 inch span
and 3 inch chord; and were tested at high and low incidence
relative the tip. Figures 23 and 24 show the calculated
wake geometry with the subwing; and figure 25 compares
the measured and calculated performance, with and without
the subwing. All the normalized results in figures 24 and
25 are based on the radius and solidity of the blade without
the subwing. The geometry of the primary tip vortex and
the influence of the subwings on the rotor performance are
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Figure 17. Hover wake geometry for model rotors with
rectangular and ogee tip planforms, model S-76 rotor, and
full scale XV-15 rotor (vertical convection z/R and radial
contraction r/R).
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Figure 18. Hover performance of model UH-60A and
tapered rotors (Mtip = .63).

calculated reasonably well. In this thrust range, the
performance calculations without the subwing compare
well with the OARF test data (ref. 46, see figure 22),
while the wind tunnel measurements (ref. 47) show
somewhat higher power. So it is the change in the power
produced by the subwings that should be compared in
figure 25. Figure 24 shows the influence of rollup model,
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Figure 19. Hover performance of S-76 rotor (Mtip = .605).
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Figure 20. Hover performance of Bo-105 rotor (Mtip =
.65).
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Figure 21. Hover performance of AH-64 and UH-60 rotors
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Figure 22. Hover performance of XV-15 rotor (Mtip =
.69).

Figure 23. Calculated hover wake geometry for XV-15
rotor with subwing (CT/σ =.102, Mtip = .69).
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Figure 24. Influence of rollup model on calculated hover
wake geometry of XV-15 rotor with subwing, at CT/σ
=.102 (vertical convection z/R and radial contraction r/R).
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Figure 25. Hover performance of XV-15 rotor with and
without subwing (Mtip = .69).

specifically the initial span station. The calculations
produce 90 deg rotation of the subwing vortex about the
primary vortex at wake ages between 35 and 90 deg,
depending on the rollup model; the measurements show 90
deg rotation at about 45 deg wake age (ref. 40). Thereafter
the calculated subwing vortex does not rotate about the
primary vortex as fast as measured: 180 deg rotation is
found at 140 to 210 deg wake age, instead of at 75 deg
wake age as measured. This difference reflects the absence
of a model of the entrainment and combination of the
subwing and primary vortex into a single vortex, as
observed in the measurements.

Concluding Remarks

Recent developments of the aerodynamics models for
the comprehensive analysis CAMRAD II have been
described, specifically the unsteady aerodynamic models and
dynamic stall models. Three models for the unsteady
aerodynamic loads in attached flow are implemented: from
incompressible thin-airfoil theory, from ONERA EDLIN,
and from Leishman-Beddoes. Five dynamic stall models are
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implemented: from Johnson, Boeing, Leishman-Beddoes,
ONERA EDLIN, and ONERA BH.

For attached flow unsteady aerodynamics, the ONERA
EDLIN and Leishman-Beddoes models are approximations
to the results of compressible thin-airfoil theory. They
give comparable results for calculations of rotor behavior.
Care must be taken with a vortex wake or dynamic inflow
model that the shed wake effects are neither omitted nor
duplicated. Correlation with the Puma measured airloads
shows that the circulatory terms of these theories are best
left out, with the shed wake effects accounted for in the
vortex wake model. Without the circulatory term, the
ONERA EDLIN model is simplest, just introducing
factors that are functions of Mach number, without any
state equations. These factors give a good representation of
Küssner's coefficients, except that the moment produced by
heave is always real, when it should exhibit a phase shift
for nonzero Mach number. The Leishman-Beddoes method
seems to offer a sounder basis for approximating the loads,
and it may be possible to use a quasistatic solution for the
impulsive terms. While giving nonsingular results at zero
Mach number, this theory does not however include the
incompressible limit exactly.

The dynamic stall models have been revised as required
to use the airfoil tables for steady characteristics (evaluated
at an angle of attack that includes the dynamic stall delay).
Retaining the use of airfoil table data is considered
essential, both to provide the basic characteristics
associated with airfoil shape, and to isolate the effects of
the dynamic stall model. Among the dynamic stall models,
the Boeing model is the simplest, requiring only three
parameters. However, the Boeing model does not include
the loads produced by the leading-edge vortex; and the form
of the angle of attack delay is much different from that of
the other models. The ONERA EDLIN and ONERA BH
models require a large number of parameters. The
Leishman-Beddoes model is attractive because the
parameters defining trailing-edge separation point and
critical lift coefficient are obtained from the static airfoil
characteristics. However, the time constants required by the
Leishman-Beddoes model do not seem to have universal
values, but depend on the airfoil shape. The differences
obtained using these dynamic stall models are no more
than should be expected from empirical methods. The
correlation for the oscillating three-dimensional wing may
be judged remarkably good considering the simplicity of
some of the models; and also exhibiting significant errors,
as expected with empirical models. There is a very large
effect of the dynamic stall model as well as yawed flow
corrections on calculated rotor performance in extreme
operating conditions, yet their calculation in practical
analyses must rely on empirical models.

Recent developments have extended the CAMRAD II
free wake method to include hover and ground effect.
Application to hover required improvements in the wake
geometry extrapolation method; a model for the tip vortex
formation process (initial radial contraction and initial
vertical convection); and the capability to require the
distortion to be identical for different wings. A model for
the tip vortex formation is required in the absence of
detailed calculations of the flow field at the wing tip and
near wake. Such detailed calculations are much needed.
With this inviscid and steady free wake geometry, it is an
idealized problem that is solved, not the actual viscous and
unsteady flow field of a hovering rotor. Correlation with
measured wake geometry, airloads, and performance has
demonstrated the capability to calculate hover performance.
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APPENDIX A: Unsteady Airfoil Motion

This appendix presents the equations for the unsteady aerodynamics models of CAMRAD II. Models from incompressible

thin-airfoil theory, ONERA EDLIN, and Leishman-Beddoes are implemented. The unsteady loads depend on the upwash w

(the normal velocity of the wing relative to the air, measured at the quarter chord), and the upwash gradient along the chord

w′ = ∂w/∂x (typically from a pitch rate). In the equations below, U is the resultant velocity of the airfoil section (always

positive); V is chordwise velocity of the wing relative the air (negative in reverse flow); M is the section Mach number; and c

is the chord. When implemented, the appropriate changes in reverse flow are included.

Incompressible Thin-Airfoil Theory

The incompressible unsteady loads are derived following reference 3. In coefficient form, the results for unsteady circulation,

lift, and moment are:
cgUS
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w′ c

2

]
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+
c
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+
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ẇ′

)]
The following options are implemented for the lift-curve slope a: (1) constant; (2) Prandtl-Glauert; (3) Prandtl-Glauert with

lift divergence; (4) from the airfoil table at zero lift; (5) from the airfoil table at the local angle of attack; (6) secant slope

from the airfoil table. Different choices can be made for the circulatory lift, other lift, and moment. According to steady

thin-airfoil theory, both the lift and moment scale with the Prandtl-Glauert factor. The following options are implemented for

the aerodynamic center shift δx = xAF − xAC : (1) constant; (2) from the airfoil table at zero lift; (3) from the airfoil table at

the local angle of attack. Here xAF is the position of the reference axis of the airfoil coefficients, and xAC is the position of the

actual aerodynamic center; both measured as fraction of the chord aft of the leading edge (usually xAF = .25). These several

choices for a and δx are needed to accommodate the aerodynamic theories as originally developed.

ONERA EDLIN Theory

The ONERA EDLIN (Equations Differentielles Lineaires) theory for the unsteady loads is presented in reference 6. To

include the effects of compressibility, Küssner’s coefficients are used, as tabulated by van der Vooren (ref. 10) and curve-fit by

Petot (ref. 6). In coefficient form, the results are:
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ẇ + ẇ′ c

2

]
where fL0 = β[1+ 5(β.57 − 1)], fL1 = β[1+ 3.92(β− 1)], fM0 = β[1+ 1.4M2], fM1 = β[−1.2625+1.5330 tan−1(10.5−
15M)]; and β =

√
1 −M2. These factors give a good representation of Küssner’s coefficients, except that the moment produced

by heave (cmh
= π

4 k
2fM0) is always real, when it should exhibit a phase shift forM > 0. The L1 term accounts for the airfoil

shed wake effects (lift deficiency function), with λ = (2U/c)λ0(1.− .76M) and µ = − 1
4 (3 − β). Petot (ref. 6) gives a value

of 0.17 for λ0. The ONERA EDLIN theory as presented by Petot (ref. 6) uses the Prandtl-Glauert option for the lift-curve slope

a. The ONERA BH theory (ref. 24) implies using the lift-curve slope at the local angle of attack.
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Leishman-Beddoes Theory

The Leishman-Beddoes theory for unsteady loads in attached flow is presented in references 11 to 13. In coefficient form,

the results are:

cgUS
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Ṁq + λqMq = λqẇ
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where A1 = .3, A2 = .7, A3 = 1.5, A4 = −.5, b1 = .14, b2 = .53, b3 = .25, b4 = .1, b5 = .5. The time constants are:

T = 2Mk = 2M
c0κ

c1(1 −M) + c∞2M2β
∑

(Ab)

where
∑

(Ab) is A1b1 + A2b2 = .413 for the lift; b5 for the moment kq; and zero for the moment kα. The factors κ are

introduced to improve correlation with measured loads. Good results are obtained with κL = .75 for lift and κM = .80 for

moment. The constants c0, c1, and c∞ are given in the following table.

derivative load 2πc0 2πc1 2πc∞

α c� 4 4 2π or c�α
cm −1 −1 0 or cmα

q = α̇c/U c� 1 1 π
cm − 7

12 − 5
4 −π

8

The expressions for c1 are obtained from reference 12. The quasistatic terms of incompressible thin-airfoil theory give c∞.

Optionally the α derivatives for c∞ can be evaluated from the airfoil tables (then a = 2π/β should be used). In cdUS
, c� is the

lift coefficient without the unsteady load or dynamic stall terms. The unsteady drag is based on approximating the steady drag

in attached flow as follows (ref. 21): cd = cdz + ((1 − η)/c�α) c2� , where η < 1 is the chord force recovery factor (typically
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η = .95) and cdz is the drag at zero lift. The following options are implemented for the drag recovery factor η: (1) constant;

(2) from the airfoil table at small angle of attack; (3) from the airfoil table at the local angle of attack. The Leishman-Beddoes

theory as presented in ref. 11 uses the secant slope for a in the LC terms, and the Prandtl-Glauert option in the remaining terms;

and the aerodynamic center and drag recovery factor from the airfoil tables at the local angle of attack.

APPENDIX B: Dynamic Stall

This appendix presents the equations for the dynamic stall models of CAMRAD II. Dynamic stall models from Johnson,

Boeing, Leishman-Beddoes, ONERA EDLIN, and ONERA BH are included. Dynamic stall is characterized by a delay in the

occurrence of separated flow produced by the wing motion, and high transient loads induced by a vortex shed from the leading

edge when stall does occur. Let αd be the delayed angle of attack, calculated from the angle of attack α. Then the corrected

coefficients are:

c� =
(
α− αz

αd − αz

)
c�2D

(αd) + ∆c�DS

cd =
(
α− αz

αd − αz

)2 (
cd2D

(αd) − cdz

)
+ cdz + ∆cdDS

cm =
(
α− αz

αd − αz

) (
cm2D

(αd) − cmz

)
+ cmz + ∆cmDS

where αz is the zero-lift angle of attack, and cdz and cmz are the corresponding drag and moment. The form of the lift and

moment corrections ensures that the coefficients below stall are unchanged. The ∆cDS’s are increments defined by the dynamic

stall model, generally attributed to the leading-edge vortex. The dynamic stall effects are washed out for angles of attack near

±90. When implemented, the appropriate changes for negative angle of attack and reverse flow are included in all models.

Johnson Model

The Johnson dynamic stall model (adapted from ref. 14) uses an angle of attack delay proportional to α̇, plus impulsive

lift and moment increments from the leading-edge vortex. The angle of attack is evaluated with a time delay ∆t = τdc/2U
that accounts for the hysteresis effects around stall: αd = α(t − ∆t) ∼= α − ∆t α̇ = α − τdα̇c/2U . Alternatively, αd is the

solution of a state equation: α̇d +λd(αd −αz) = λd(α−αz), where λd = 2U/cτd. McCroskey (ref. 15) and Beddoes (ref. 16)

found that the dynamic stall delay correlates fairly well in terms of the normalized time constant τd. The values τL = 9.2 and

τM = 5.4 are typical. The equations for the loads include the increments ∆c�DS
, ∆cdDS

, and ∆cmDS
, which are produced by

the leading-edge vortex. When the blade section angle of attack reaches the dynamic stall angle αDS , a leading-edge vortex is

shed. As this vortex passes aft over the airfoil upper surface it induces large transient loads. The experimental data of reference

17 show that the peak incremental aerodynamic coefficients depend on the pitch rate at the instant of stall, α̇c/U . It is assumed

that the incremental coefficients caused by the shed vortex (∆cDS) rise linearly to these peak values in the time increment

∆tDS = τvc/2U , and then fall linearly to zero in the time ∆tDS again. Hence the model involves impulsive lift and nose down

moment changes when dynamic stall occurs. After these transient loads decay, the wing section is assumed to be in deep stall,

and dynamic stall is not allowed to occur again until the flow has reattached. Flow reattachment takes place when the angle of

attack drops below the angle αRE . The dynamic stall angle αDS and reattachment angle αRE correspond to fd = f(αd) = .7,

where f is the trailing-edge separation point of the Leishman-Beddoes model. The experimental data of reference 17 give

∆c�LEV
= 2.0 and ∆cmLEV

= −0.65 for the peak loads at high pitch rate (α̇c/U at stall above .05). Typically τv = 3.6 to

5.6. Note that if the total rise and fall time 2∆tDS is interpreted as the time the leading-edge vortex takes to traverse the chord

(distance c), then the speed of the vortex is vvortex = U/τv . So τv = 4 implies the leading-edge vortex travels at one-fourth the

free stream speed.
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Boeing Model

The Boeing dynamic stall model (developed in refs. 18 to 20) uses an angle of attack delay proportional to the square-root

of α̇, which produces the basic hysteresis effects. The coefficient increments produced by the leading-edge vortex are not used

in this model. The delayed angle of attack is αd = α − τd
√
|α̇c/2U | sign α̇. Alternatively, this can be considered a time lag

dependent on the pitch rate, giving a state equation for αd: α̇d +λd(αd −αz) = λd(α−αz), where λd = (2U/cτd)
√
|α̇c/2U |.

The time constant τd is a function of Mach number and the airfoil section, obtained from oscillating airfoil tests (ref. 20).

Leishman-Beddoes Model

The Leishman-Beddoes dynamic stall model (refs. 21 to 23) uses a delayed angle of attack, plus lift and moment increments

from the leading-edge vortex. This model characterizes the airfoil static stall behavior by the trailing-edge separation point f

(fraction of chord from leading edge), and a critical lift coefficient c�CR
at the separation onset boundary (leading-edge separation

at low Mach number, shock reversal at high Mach number). The airfoil data for lift are used to identify constants s1, s2, and αs

that generate f(α) as follows:

f =

{
1.− .3 exp((|α− αz| − αs)/s1) |α− αz| ≤ αs

.04 + .66 exp((αs − |α− αz|)/s2) |α− αz| > αs

Then |α−αz| = αs or f = .7 is taken as the definition of stall. The parameters c�CR
, s1, s2, and αs are required as a function of

Mach number, for positive and negative angle of attack, normal and reverse flow, at each span station. The Leishman-Beddoes

model for unsteady flow is based on fd = f(αd) at the delayed angle of attack. Here the model is modified to use the static loads

directly from the airfoil tables, instead of fitting the static loads to analytical functions. Further modifications of the model are

required because the above expression for f(α) does not distinguish between positive and negative angle of attack. The model

is also extended to large angle of attack and reverse flow. In order to handle oscillations through αz , a continuous monotonic

function of α is needed:

f̂ =

{
fz − f α− αz ≥ 0

f − fz α− αz < 0

where fz = f(αz) = 1.− .3 exp(−αs/s1); note that fz may not be the same for positive and negative angle of attack. In order

to handle large angle of attack, the function f is modified:

f =


1.− .3 exp((|α− αz| − αs)/s1) |α− αz| ≤ αs

.04 + .66 exp((αs − |α− αz|)/s2) |α− αz| > αs

fH(90 − |α− αz|)/(90 − αH) |α− αz| > αH

Here αH = αs +Hs2 and fH = .04 + .66e−H , andH = 6 is used. This modification to the definition of f does not affect the

model for attached flow or around stall, but with it the delayed angle of attack behaves reasonably at very large angles.

The delayed angle of attack αd is calculated as follows. Static hysteresis around stall is modelled by using a smaller αs

when the angle of attack is decreasing: αs = αs input −∆αs(1− fd)1/4 (with fd from the last time step). There is a lag in the

leading-edge pressure relative c�, so a lagged lift is used in the stall criterion:

L̇p + λpLp = λp(α− αz + LC/A)

αp = Lp + LI/A+ αz

whereA = c�α. The dimensionless time constant Tp gives λp = 2U/cTp. The unsteady lift c�US
is split intoLC (theLC1 +LC2

term in Leishman-Beddoes theory) and LI (the remaining terms), calculated using a = c�α instead of the secant slope. The stall
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criterion is based on c�p = A (αp − αz). If |c�p| ≥ c�CR
, the critical condition for leading-edge or shock-induced separation

has been reached; while if |c�p| < c�CR
, reattachment is allowed. This angle of attack gives a trailing-edge separation point

f̂p = f̂(αp). There is an additional lag in the boundary layer response, modelled as a lag in f :
˙̂
fd + λf f̂d = λf f̂p

where λf = 2Uσf/cTf . There are separate fd equations for lift and moment, to allow different behavior during reattachment

(implemented using different values of σf ). If fd is decreasing (∆fd < 0), the flow is separating; if fd is increasing, the flow is

reattaching. The difference ∆fd is calculated at the end of the procedure, for use during the next time step. Finally, the delayed

angle of attack αd is calculated from f̂d. Vortex lift accumulation begins at the onset of stall (indicated by |c�p| = c�CR
), driven

by the difference between the linear and nonlinear lifts: cv = c�L
− c� = A(α−αz)− c�. The leading-edge vortex reaches the

trailing edge at time τDS = Tvl, where tDS = τDSc/2U is the time since the onset of stall. The speed of the vortex implied is

vvortex = 2U/Tvl, or one-fourth the free stream velocity for Tvl = 8. The vortex loads are obtained from cv with a time lag:

L̇v + λvLv = Dċv

∆c�DS
= Lv

∆cdDS
= Lv tan(α− αz)

∆cmDS
= −xs

(
1 − cos

πτDS

Tvl

)
∆c�DS

where xs = .20 or .25 typically. The moment exists only until τDS = 2Tvl. The time constant gives λv = 2Uσv/cTv . The

switch D (equal zero or one) turns the vortex lift accumulation on and off. With the switch D present, it is not possible to

formulate the equation for Lv in terms of cv instead of ċv , such that the CAMRAD II analysis can deal with the resulting

differential equation of motion. So an implicit solution is always used for Lv . Interactions between the mechanisms are

accounted for by modifying the time constants, using the parameters σf (for lift and moment) and σv .

An alternative form of the delayed angle of attack calculation uses a lagged lift coefficient c�p to obtain the angle of attack

αp:
c�C

= A (α− αz) + LC

L̇p + λpLp = λpc�C

c�p = Lp + LI

αp = c�p/A+ αz

To match the implicit solution of the Leishman-Beddoes model in references 21 and 22, the following form is required:

c�C
= A (α− αz) + LC

L̇p + λpLp = ċ�C

c�p = c�C
− Lp + LI

αp = c�p/A+ αz

L̇f + λfLf = ˙̂
fp

f̂d = f̂p − Lf

The time derivatives on the right hand side of these state equations are not available analytically, so in this form an implicit

solution must be used. In practice, identical results are obtained from all these forms of the equations.

The trailing-edge separation point f is related to the airfoil lift using the Kirchhoff expression: c� = c�α ((1+
√
f)/2)2(α−

αz) (ref. 21). Hence the airfoil table data for lift define f as a function of α. The parameter αs is given by f = .7; and then

s1 and s2 are identified by fitting the table data. The critical lift c�CR
should be identified from pressure data (ref. 21), but can

also be determined based on the break in chord force (loss of leading-edge suction) or the sudden increase in drag. The time

constants are determined by correlation with unsteady airfoil data (see, for example, ref. 22).

ONERA EDLIN Model

The ONERA EDLIN (Equations Differentielles Lineaires) dynamic stall model (ref. 6) uses a stall delay, plus lift, drag,

and moment increments calculated from second-order differential equations:

L̈2 + aL̇2 + bL2 = −bU ∆c� − eUα̇

M̈2 + aṀ2 + bM2 = −bU ∆cm − eUα̇

D̈2 + aḊ2 + bD2 = −bU ∆cd − eUα̇ sign(α− αz)
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with α in degrees here. These equations are driven by the difference between the linear and nonlinear loads: ∆c� = c�L
− c� =

c�α(α−αz)− c�, ∆cm = cmL
− cm = cmα(α−αz) + cmz − cm, ∆cd = cdL

− cd = cdz − cd; where c�, cm, and cd are here

the static coefficients, without the unsteady or leading-edge vortex terms. Then the load increments are

∆c�DS
=

1
U

(L2 + U ∆c� + dUα̇)

∆cmDS
=

1
U

(M2 + U ∆cm + dUα̇) +M3

∆cdDS
=

1
U

(D2 + U ∆cd + dUα̇ sign(α− αz))

The stall delay is accounted for by setting the right-hand side of the differential equation to zero if τSS < τd, where tSS =
τSSc/2U is the time since the static stall angle was exceeded. The static stall angle corresponds to f(α) = .7, where f is

the trailing-edge separation point of the Leishman-Beddoes model. Petot has described a refined transition model, intended to

accommodate airfoils that exhibit larger nose-down pitching moments at dynamic stall. The refined transition model assumes

that the extra lift from dynamic stall is convected aft from the quarter chord after moment stall occurs, producing the extra

moment termM3 in ∆cmDS
. Here this refined transition model is implemented by

M3 = −(τSS − τdM )µ∆c�DS

for (τSS − τdM )µ = 0 to 1.5 (convection from quarter chord to trailing edge). This extra moment is turned off after lift stall,

by multiplyingM3 by the factor (2− τSS/τdL) when τdL < τSS < 2τdL. The coefficients in these equations depend on the lift

difference ∆c�:

a = (2U/c)
(
a0 + a2(∆c�)2

)
b = (2U/c)2

(
b0 + b2(∆c�)2

)2

e = (2U/c) e2(∆c�)2
d =

{
(c/2U) d1|∆c�| lift and moment

(c/2U) (d0|α− αz| + d1|∆c�|) drag

The notation has been changed somewhat from the original ONERA notation. The parameters must be evaluated from data on

airfoils oscillating in the stalled flow regime (see, for example, ref. 6).

ONERA BH Model

The ONERA BH (Bifurcation de Hopf) dynamic stall model (ref. 24) uses a delayed angle of attack, plus lift and moment

increments calculated from first-order and second-order differential equations:

L̇1 + λL1 = −λU ∆c�

Ṁ1 + λM1 = −λU ∆cm

L̈2 + aL̇2 + bL2 = eUα̇+ dUα̈

M̈2 + aṀ2 + bM2 = eUα̇+ dUα̈

with α in degrees here. Then the load increments are

∆c�DS
=

1
U

(L1 + U ∆c� + L2)

∆cmDS
=

1
U

(M1 + U ∆cm +M2)

The appropriate changes for reverse flow are included. The delayed angle of attack is calculated using a simplified version of

the Leishman-Beddoes model:

α̇p + λp(αp − αz) = λp(α− αz)

f̂p = f̂(αp)

˙̂
fd + λf f̂d = λf f̂p

αd = α(f̂d)
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where λp = 2U/cTp and λf = 2U/cTf . The coefficients in these equations depend on the load increments:

a = (2U/c)ωs

(
−a0 + a2∆c2

)
b = (2U/c)2 ω2

s

(
1 − b1∆c sign(α− αz) − b2∆c2

)
e = (2U/c)ωse0

d = ωsd0

λ = (2U/c)λ0

using ∆c = L2/U and M2/U in the lift and moment equations respectively (from the last time step if an implicit solution is

used). The notation has been changed somewhat from the original ONERA notation. The parameters have different values for

separating and reattaching flow: separating flow values are used if fp < fCR; reattaching flow values are used if fp ≥ fCR

(note the use of fp rather than fd). For lift, fCR = .7 is used. The critical angle of attack is ∆αm larger for moment than for

lift. So

fCR =

{
.04 + .66 exp(−∆αm/s2) if α increasing

1.− .3 exp(−∆αm/s1) if α decreasing

is used for the moment. For reattaching flow, only a0 has a nonzero value, so the dynamic stall loads decay. The parameters

must be evaluated from data on airfoils oscillating in the stalled flow regime (see, for example, ref. 24).
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